101 research outputs found

    Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation

    Get PDF
    A myriad of mechanisms have been suggested to account for the full richness of visual cortical plasticity. We found that visual cortex lacking Arc is impervious to the effects of deprivation or experience. Using intrinsic signal imaging and chronic visually evoked potential recordings, we found that Arc−/− mice did not exhibit depression of deprived-eye responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation also failed to elicit a shift in ocular dominance or open-eye potentiation. Moreover, Arc−/− mice lacked stimulus-selective response potentiation. Although Arc−/− mice exhibited normal visual acuity, baseline ocular dominance was abnormal and resembled that observed after dark-rearing. These data suggest that Arc is required for the experience-dependent processes that normally establish and modify synaptic connections in visual cortex.Howard Hughes Medical InstituteNational Science Foundation (U.S.

    Elevated Levels of the Vesicular Monoamine Transporter and a Novel Repetitive Behavior in the Drosophila Model of Fragile X Syndrome

    Get PDF
    Fragile X Syndrome (FXS) is characterized by mental impairment and autism in humans, and it often features hyperactivity and repetitive behaviors. The mechanisms for the disease, however, remain poorly understood. Here we report that the dfmr1 mutant in the Drosophila model of FXS grooms excessively, which may be regulated differentially by two signaling pathways. Blocking metabotropic glutamate receptor signaling enhances grooming in dfmr1 mutant flies, whereas blocking the vesicular monoamine transporter (VMAT) suppresses excessive grooming. dfmr1 mutant flies also exhibit elevated levels of VMAT mRNA and protein. These results suggest that enhanced monoamine signaling correlates with repetitive behaviors and hyperactivity associated with FXS

    Neurobiology of social behavior abnormalities in autism and Williams syndrome

    Get PDF
    Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities

    Cephalopod-omics: emerging fields and technologies in cephalopod biology

    Get PDF
    Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single cell transcriptomics, metagenomics and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks and potential solutions. The article highlights the interdisciplinary nature of the cephalopod -omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field

    Fragile x syndrome and autism: from disease model to therapeutic targets

    Get PDF
    Autism is an umbrella diagnosis with several different etiologies. Fragile X syndrome (FXS), one of the first identified and leading causes of autism, has been modeled in mice using molecular genetic manipulation. These Fmr1 knockout mice have recently been used to identify a new putative therapeutic target, the metabotropic glutamate receptor 5 (mGluR5), for the treatment of FXS. Moreover, mGluR5 signaling cascades interact with a number of synaptic proteins, many of which have been implicated in autism, raising the possibility that therapeutic targets identified for FXS may have efficacy in treating multiple other causes of autism

    Critical Period Plasticity Is Disrupted in the Barrel Cortex of Fmr1 Knockout Mice

    Get PDF
    SummaryAlterations in sensory processing constitute prominent symptoms of fragile X syndrome; however, little is known about how disrupted synaptic and circuit development in sensory cortex contributes to these deficits. To investigate how the loss of fragile X mental retardation protein (FMRP) impacts the development of cortical synapses, we examined excitatory thalamocortical synapses in somatosensory cortex during the perinatal critical period in Fmr1 knockout mice. FMRP ablation resulted in dysregulation of glutamatergic signaling maturation. The fraction of silent synapses persisting to later developmental times was increased; there was a temporal delay in the window for synaptic plasticity, while other forms of developmental plasticity were not altered in Fmr1 knockout mice. Our results indicate that FMRP is required for the normal developmental progression of synaptic maturation, and loss of this important RNA binding protein impacts the timing of the critical period for layer IV synaptic plasticity

    Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders

    Get PDF
    Neurodevelopmental disorders, including autism spectrum disorders, are highly male biased, but the underpinnings of this are unknown. Striatal dysfunction has been strongly implicated in the pathophysiology of neurodevelopmental disorders, raising the question of whether there are sex differences in how the striatum is impacted by genetic risk factors linked to neurodevelopmental disorders. Here we report male-specific deficits in striatal function important to reward learning in a mouse model of 16p11.2 hemideletion, a genetic mutation that is strongly associated with the risk of neurodevelopmental disorders, particularly autism and attention-deficit hyperactivity disorder. We find that male, but not female, 16p11.2 deletion animals show impairments in reward-directed learning and maintaining motivation to work for rewards. Male, but not female, deletion animals overexpress mRNA for dopamine receptor 2 and adenosine receptor 2a in the striatum, markers of medium spiny neurons signaling via the indirect pathway, associated with behavioral inhibition. Both sexes show a 50% reduction of mRNA levels of the genes located within the 16p11.2 region in the striatum, including the kinase extracellular-signal related kinase 1 (ERK1). However, hemideletion males show increased activation in the striatum for ERK1, both at baseline and in response to sucrose, a signaling change associated with decreased striatal plasticity. This increase in ERK1 phosphorylation is coupled with a decrease in the abundance of the ERK phosphatase striatum-enriched protein-tyrosine phosphatase in hemideletion males. In contrast, females do not show activation of ERK1 in response to sucrose, but notably hemideletion females show elevated protein levels for ERK1 as well as the related kinase ERK2 over what would be predicted by mRNA levels. These data indicate profound sex differences in the impact of a genetic lesion linked with neurodevelopmental disorders, including mechanisms of male-specific vulnerability and female-specific resilience impacting intracellular signaling in the brain

    The Protective Action Encoding of Serotonin Transients in the Human Brain

    Get PDF
    The role of serotonin in human brain function remains elusive due, at least in part, to our inability to measure rapidly the local concentration of this neurotransmitter. We used fast-scan cyclic voltammetry to infer serotonergic signaling from the striatum of fourteen brains of human patients with Parkinson's disease. Here we report these novel measurements and show that they correlate with outcomes and decisions in a sequential investment game. We find that serotonergic concentrations transiently increase as a whole following negative reward prediction errors, while reversing when counterfactual losses predominate. This provides initial evidence that the serotonergic system acts as an opponent to dopamine signaling, as anticipated by theoretical models. Serotonin transients on one trial were also associated with actions on the next trial in a manner that correlated with decreased exposure to poor outcomes. Thus, the fluctuations observed for serotonin appear to correlate with the inhibition of over-reactions and promote persistence of ongoing strategies in the face of short-term environmental changes. Together these findings elucidate a role for serotonin in the striatum, suggesting it encodes a protective action strategy that mitigates risk and modulates choice selection particularly following negative environmental events
    corecore